

ONGOING COTTON

PROJECTS IN EMARI

Şaire R.TÜRKOĞLU Ayten DOLANÇAY Hacer KAYA Petek TOKLU Sedat SÜLLÜ Bekir S. ÖZBEK

Two <u>national</u> cotton breeding projects have been coordinated by our institute.

TAGEM-MAY Breeding of New Varieties by Hybridization and Adaptation Project on Cotton

Southeastern Anatolia Region Cotton Integrated Crop Management Project

Three breeding project have been carried on.

Research on enhancing of the resistance to storm and developing fiber technological properties of the local cotton (*Gossypium hirsutum* L.) variety Çukurova–1518 in Çukurova region

Breeding of Cotton in Çukurova Region

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

Research on enhancing of the resistance to storm and developing fiber technological properties of the local cotton (*Gossypium hirsutum* L.) variety Çukurova-1518 in Çukurova region

This study is carried out to transfer the resistance to storm and superior fiber technological properties of Delcerro, Sealand-542, Giza-45 to the local cotton variety Çukurova-1518 by using back-crossing breeding method. cv BEREN was registered in 2010 from that project.

Breeding of cotton varieties in Çukurova Region

This study is carried out to determine the varieties with higher yield and technological properties among the genotypes obtained from abroad or lines bred in our country and to maintain their traits.

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

- This study is carried out to develop the new cotton varieties with higher fiber quality and yield for Çukurova region.
- For shortening the breeding process a doubled haploidy study is carried out and irradiated pollen fertilization method has been used.
- Besides that a mutation study is carried out in that project.

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

This study is carried out according to

- the general strategies of 'National Cotton Project'
- with the aim of developing new cotton varieties
- with higher fiber quality and yield for Çukurova region
- ⇒ as a continuous breeding project.

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

➡ In the research three studies are carried out.

cross breeding

(hybridization - pedigree & modified single

- seed descend*)
- haploidy tecnique and
- mutation breeding

*: Double or three seeds are harvested from every plant in that method. Single Seed Descend is adopted to cotton in this way.

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

CROSS BREEDING

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

Our main aims of breeding for our region are;

high yield

- improved fiber quality,
- resistance to storm,
- suitablity for mechanical harvesting

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

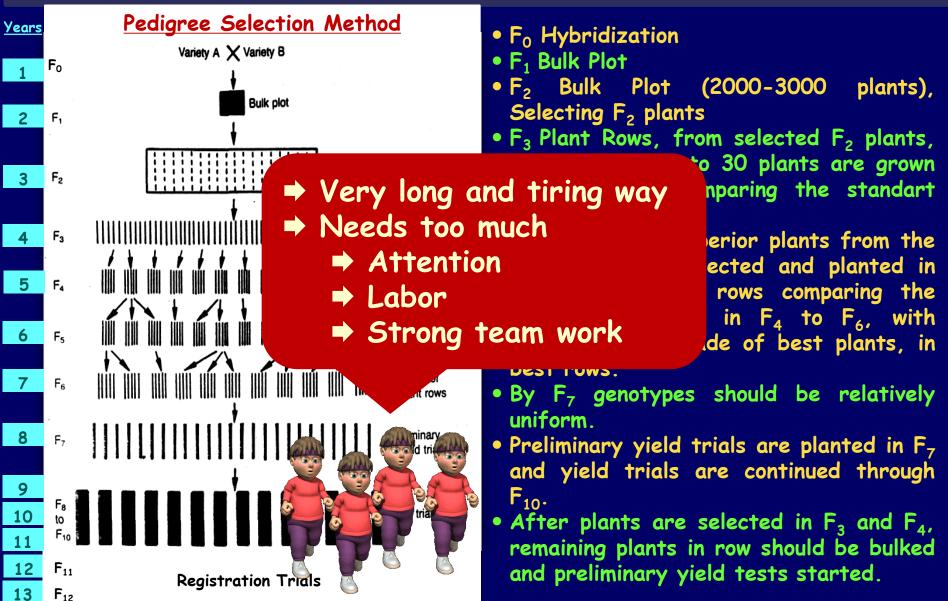
<u>Method</u>

- Hybridization
- Pedigree selection
- have been used as <u>main</u> breeding method.
- Besides that for some promising genotypes
- Modified Single Descend Selection
- have been used as second method.

Hybridization

Suitable Flower Stage for Emasculation and Pollination

Male



Female - Emasculation

Pollination

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

With the regular crossing studies

every year new hybrid combinations are obtained

➡ for providing the continuity of the breeding process.

Besides that the seeds of some combinations obtained by crossing at the F₃ stage are send to the other research institutes for providing material exchanging collaboration between the research institutes.

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

Number of Combinations, Strains, Progeny Rows and Registrating Application Years of the Material Obtained from Crossing Studies

Crossing Year	Number of Combinations	Stages	Number of Strains	Number of Progeny Rows	Registrating Application Year
2003	4	F7	24		2012
2004	11	F6	19		2013
2005	20	F5	31	64	2014
2006	23	F4	54	108	2015
2007	12	F3	12	180	2016
2008	12	F2	12		2017
2009	14	F1	15		2018
2010	19	FO	19		2019
Totally	115	F0 - F7	186	352	

F4 Material (Pedigree Selection)

No	Combination	2007 Selected F2	2008 F3 Progeny	2009 F4 Strains	
		Plants	Rows	Sown	Selected
1	Ç. 1518/Carmen //DES 119	19	4	1	0
2	SG 125/Aydın 110	6	2	1	0
3	Ç.1518/Teks//Fibermax 819	7	4	0	0
4	Des 119/FM 819	26	13	4	4
5	STN 453/FM 819	32	22	10	3
6	SR/R (95-31) 98-1/DES 119	15	9	5	3
7	DP 419/Aydın 110	32	13	7	5
8	Carmen/Deltapine 388	32	20	8	3
9	Çun 52/Adana 98	16	11	3	1
10	DES 119/DP 50	8	4	1	1
11	SG 125/Sicala 33	22	12	7	5
12	Ç.1518/Carmen // BA119///D119	18	11	2	1
13	Ç.1518/Carmen // Sicala 33 ///D 119	15	10	4	4
14	Çukurova 1518 /Aydın 110	11	3	1	0
15	Çukurova 1518//Ç.1518/Giza 45	4	1	0	0
16	Çukurova 1518/DES 119	10	5	1	0
17	Ç.1518/Teks//DES 119	20	10	2	0
18	Adana 98/Aydın 110	18	7	1	0
19	Ç. 1518/Carmen //Tamcot Pyramid	10	1	1	1
20	Çukurova 1518//Ç.1518/Teks	15	5	0	0
Toplam		336	167	59	31

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

Material Maintained by Modified Single Descent Method

Stage	Combination		
	Ç.1518/Carmen// Sicala 33///DES 119////DP 419		
F3	Ç.1518/Carmen// Sicala 33///DES 119////ST 488		
	SG 125/ Sicala 33//Carmen/ DP 388		
	SG 125/ Sicala 33//Fantom		
	C.Queen /CA 223		
	Ç. 1518/Carmen //DES 119		
	SG 125/Sicala 33		
F4	Ç.1518/Carmen // BA119///D119		
	Ç.1518/Carmen // Sicala 33 ///D 119		
	Çukurova 1518/DES 119		
	Ç.1518/Teks//DES 119		
F6	Ç.1518/Carmen		
	Ç.1518/Teks		

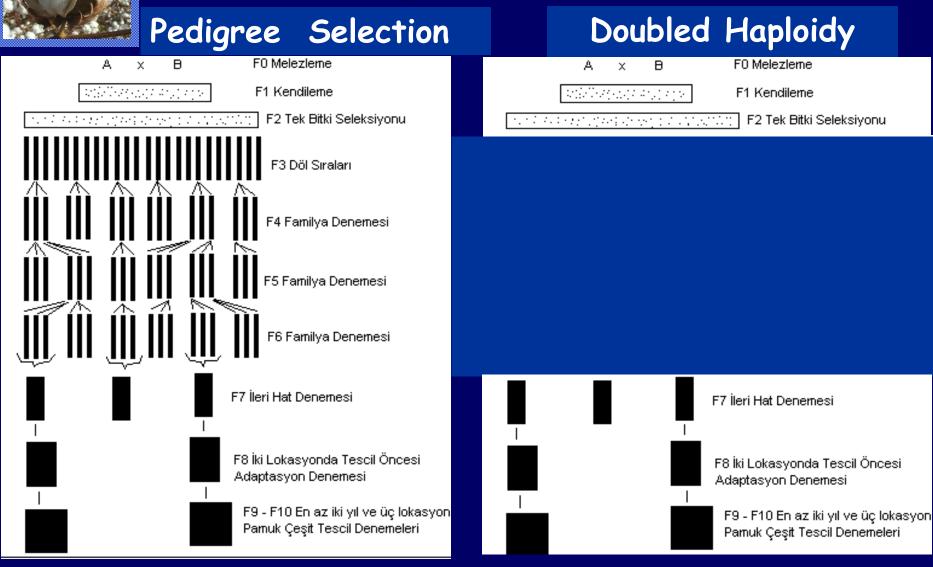
Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

HAPLOIDY

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

In the project

A haploidy study is carried out for shortening the breeding process.

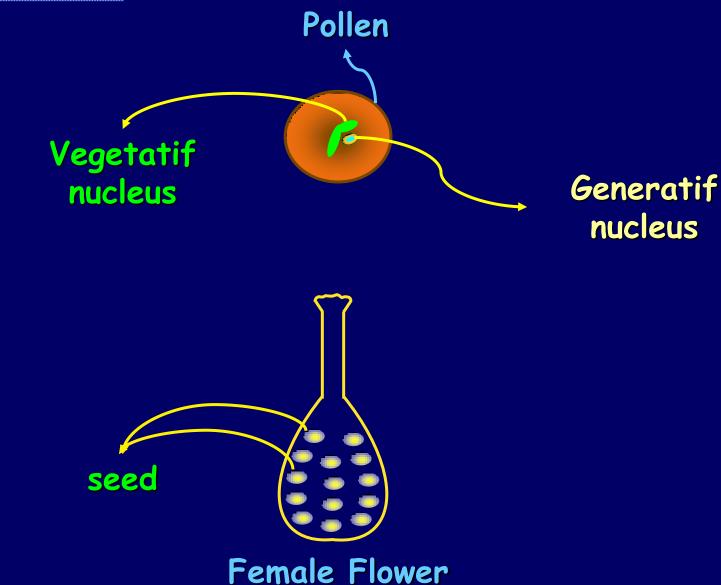

For this aim irradiated pollen technique in cotton has been firstly carried out in this project in our institute. According to the classical breeding procedure it is needed intensive labor for 5-7 years for purification of the lines after hybridization.

Haploidy Study

- With the doubled haploid technique,
 - it can be possible to obtain pure lines in a single generation
 - the time required a cultivar developing process can be shortened importantly.
- The important advantage of this method is to be able to obtain 100% homozygous plants in a single generation.

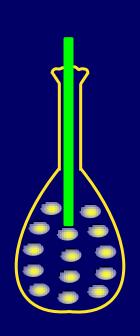
Hybridization followed by a pedigree selection and advantage of doubled haploid technique

Doubled Haploid Technique


Haploidization techniques have been applied as

- *in vitro* androgenesis
 - anther culture and
 - microspore culture
- in vitro gynogenesis and partenosis
 - unpolinated ovule-ovary culture,
 - chromosome elimination,
 - pollination with incomplete pollen.

Normal Fertilization



Normal Fertilization

Pollen comes on the stigma

Vegetative nucleus forms the pollination tube

6

Normal Fertilization

It is expected:

- Pollen comes on the stigma
- Vegetative nucleus forms the pollination tube
- Generatif material goes to embryo sac

Normal plant is formed with 2n chromosome number

Irradiated Pollen Tecnique

Polen Irradiation

<u>It is expected:</u>

 Generative nucleus is inactivated (incomplete pollen)

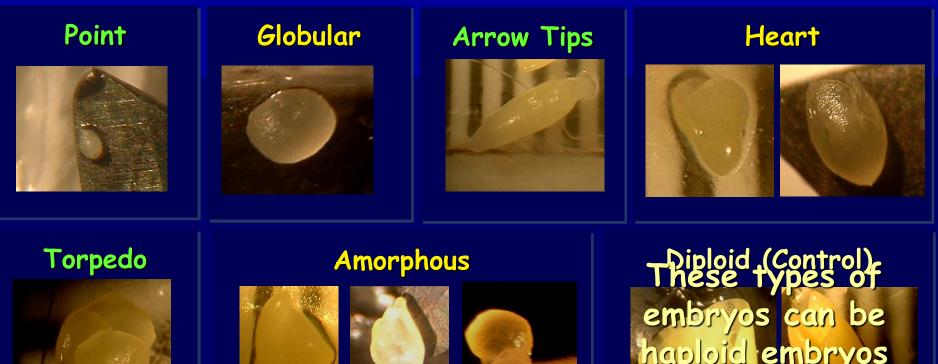
Irradiated Pollen Tecnique

Haploid Embryo Induction

Embryo formation from the haploid cells in embryo sac. (antipod, synergid and especially egg cell)

Generative nucleus is <u>Finactive du (incomp</u>lete pollen)

Rescue Haploid Embryos In vitro culture of the embryos at an early stage

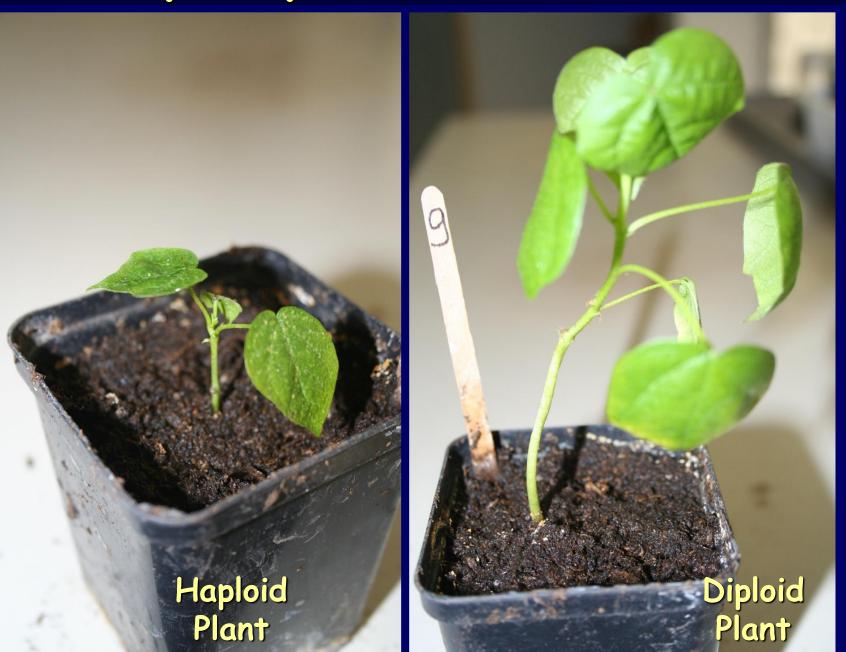

Vegetative nucleus is activated for formation <u>HappoilinationFurmation</u> stimulating the embryo

Sac. <u>Doubling Chromosomes</u> Homozygous, fertil plant with 2n chromozom number

Investigated Traits

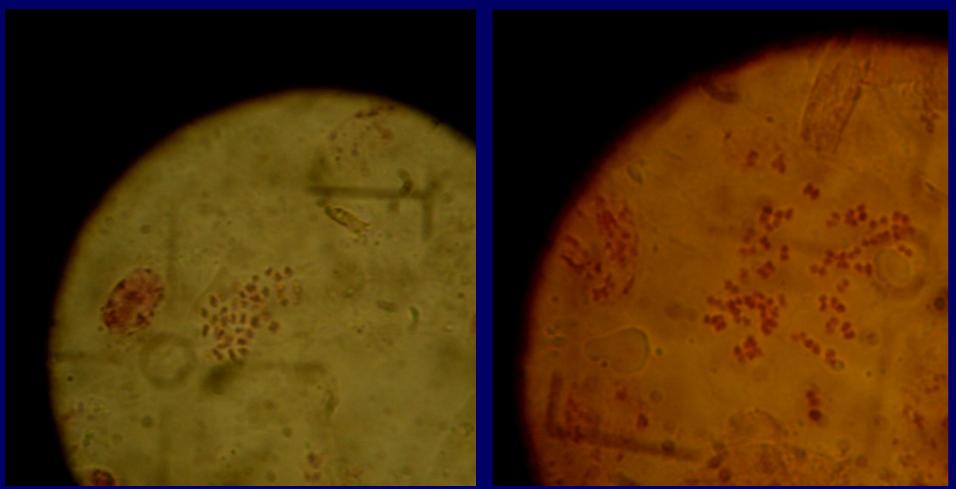
Shapes and Development Stages of Embryos Cultured In vitro

haploid embryos resulting of gamma ray stimulating.



Haploidy Studies

With the irradiated pollen technique;


- We cultured lots of haploid embryos
- We obtained ten rooted haploid plants
- It was proved that two of them were haploid after chromosomes counting
- Unfortunately they died due to bad growing conditions of growth room
- We have more than 200 embryos in culture now and we have been studying on them.

2007 Haploidy Studies

2007 Haploidy Studies

Chromosome Observations

Haploidy - Irradiated Pollen Study

Year	Ray Dose	Embryo Age	Number of Pollinated Flowers	Number of Investigated Seeds	Number of Embryo cultured in vitro	Number of Rooted Seedlings
2005	7	1	140	345	0	0
2006	5	7	420	2145	27	0
2007	4	2	802	4951	250	10
2008	4	1	<mark>979</mark>	4216	582	0
2009	1	1	342	3995	583	28

Sub Culture studies for suitable in vitro conditions and determining ploidy level are still carried on...

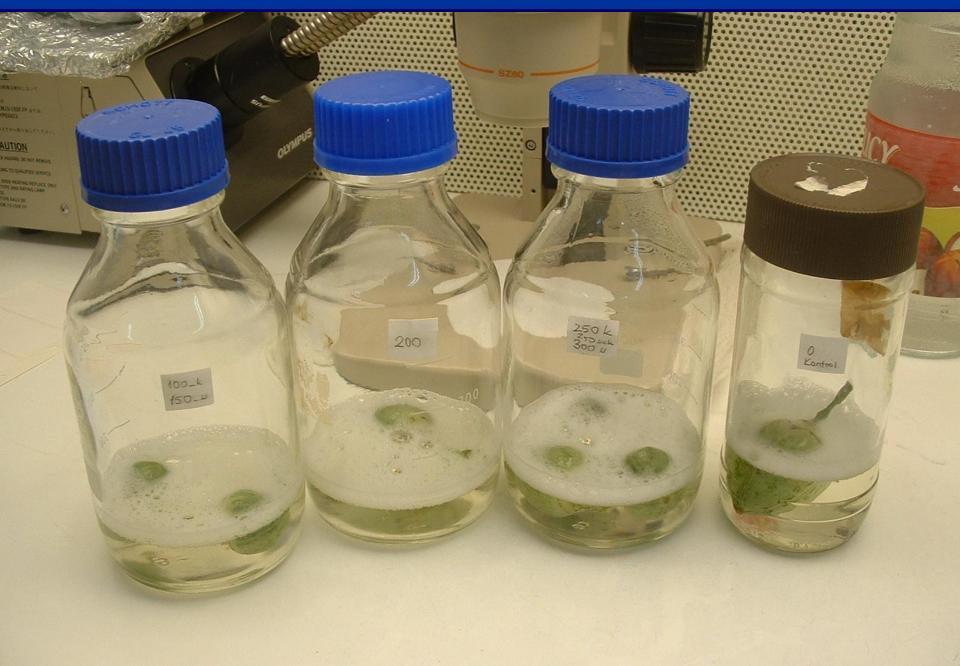
Emasculation of female flower

Preparation of male flowers for irradiation

Irradiation of pollens

(Turkish Atomic Energy Authority-Ankara

Pollination


Shading of female plants

Harvested bolls

Surface Sterilization of the bolls

In vitro culture of the embryos (18 days old)

18. DaysControl0 Gray

Diploid Embriyo

In vitro culture of the embryos (18 days old) <u>Same Ages Embryos (18 days old)</u> Kontrol - 0 Gray 100 Gray

Diploid Embriyo

Can be Haploid

2007 Haploidy Studies

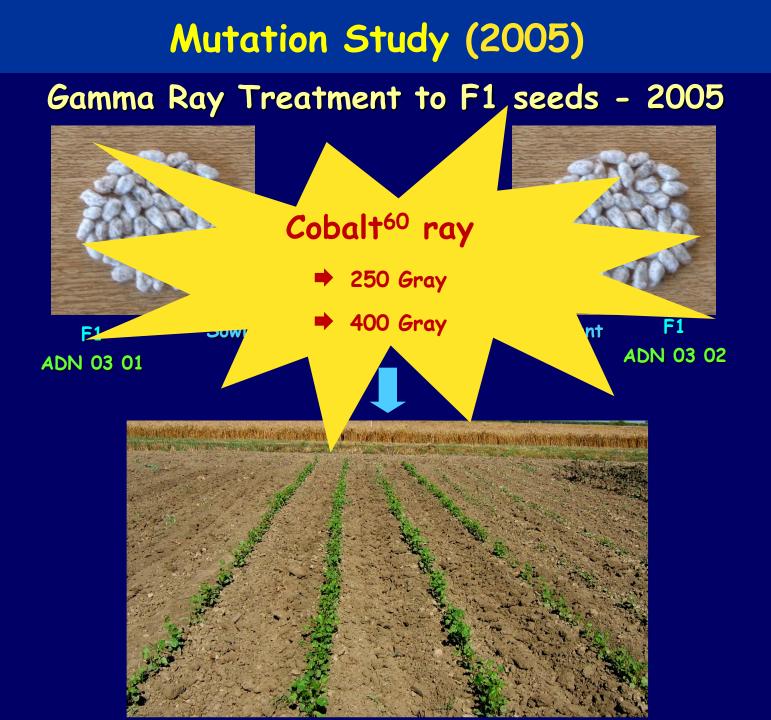
2007 Haploidy Studies

Acclimatization

Chromozom Counting

ON GOING PROJECTS

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines


MUTATION

ON GOING PROJECTS

Breeding of cotton varieties for higher fiber quality and yield by hybridization and using the biotechnological methods during purifying the lines

- In the project
- A mutation study is carried out to induce variation effect of mutation through gamma irradiation.
- In that study plants with fuzzless seeds were obtained and the researches on inheritablity and maintenance of fuzz trait are carried on.

Mutation Study (2005)

Mutation Study (2005) The Chimeric plant which has both fuzzles and fuzzy seeds

Mutation Study (2005) The Chimeric plant which has both fuzzles and fuzzy seeds

Mutation Study (2005)

Mutation Study (2008)

 The fuzzless seeded plants were maintained by the pedigree selection method

Mutation (2005-2009)

Seed Trait	Growing Year	Stage	Rate%		
			Fuzzles	Semifuzzy	Fuzzy
Fuzzles (M ₁)	2006	M ₂	(1,2)	2,4	96,4
Fuzzles (M ₂)	2007	M ₃	18,7	31,3	50,0
Fuzzles (M ₃)	2008	M ₄	(41,3)	21,3	37,4
Fuzzles (M ₄)	2009	M ₅	59,7	21,1	19,2

Mutation Study Fuzzy Seed

Mutation Study Semifuzzy Seeds

Mutation Study Fuzzles Seeds

Mutation Study Fuzzles seeds

Some Photos from EMARI

Experiment Area

Hybridization

Suitable flower stage

Male Flower

Female Flower (Emasculation)

Pollination

Experiment Area

Experiment Area

Mechanical Harvesting Study on Cotton

Plant Monitoring Project

Natural Crossing Study on Cotton

Natural Coloured Cotton Study

